Предмет h помещают несколько дальше переднего фокуса объектива. Объектив дает действительное, обратное, увеличенное изображение H , находящееся между передним фокусом окуляра и оптическим центром окуляра. Это промежуточное изображение рассматривается в окуляр как в лупу. Окуляр дает мнимое, прямое, увеличенное изображение H , которое расположено на расстоянии наилучшего зрения S ≈ 25 см от оптического центра глаза.

Это изображение мы рассматриваем глазом, на его сетчатке формируется действительное, обратное, уменьшенное изображение.

Увеличение микроскопа – отношение размеров мнимого изображения к размерам рассматриваемого через микроскоп предмета:
. Умножим числитель и знаменатель на размер промежуточного изображения H :
. Таким образом, увеличение микроскопа равно произведению увеличения объектива на увеличение окуляра. Увеличение объектива можно выразить через характеристики микроскопа, используя подобие прямоугольных треугольников
, где L оптическая длина тубуса : расстояние между задним фокусом объектива и передним фокусом окуляра (считаем, что L >> F об). Увеличение окуляра
. Следовательно, увеличение микроскопа равно:
.

4. Разрешающая способность и предел разрешения микроскопа. Дифракционные явления в микроскопе, понятие о теории Аббе.

Предел разрешения микроскопа z – это наименьшее расстояние между двумя точками рассматриваемого в микроскоп объекта, когда эти точки еще воспринимаются отдельно. Предел разрешения обычного биологического микроскопа лежит в диапазоне 34 мкм. Разрешающей способностью микроскопа называют способность давать раздельное изображение двух близко расположенных точек исследуемого объекта, то есть это величина, обратная пределу разрешения.

Дифракция света налагает предел на возможность различения деталей объектов при их наблюдении в микроскоп. Так как свет распространяется не прямолинейно, а огибает препятствия (в данном случае, рассматриваемые объекты), то изображения мелких деталей объектов получаются размытыми.

Э. Аббе предложил дифракционную теорию разрешающей способности микроскопа . Пусть предметом, который мы хотим рассмотреть в микроскоп, будет дифракционная решетка с периодом d . Тогда минимальная деталь предмета, которую мы должны различить, как раз и будет периодом решетки. На решетке происходит дифракция света, но диаметр объектива микроскопа ограничен, и при больших углах дифракции не весь свет, прошедший через решетку, попадает в объектив. Реально свет от предмета распространяется к объективу в некотором конусе. Получаемое изображение тем ближе к оригиналу, чем больше максимумов участвует в формировании изображения. Свет от предмета распространяется к объективу от конденсора в виде конуса, который характеризуется угловой апертурой u – угол, под которым виден объектив из центра рассматриваемого предмета, то есть угол между крайними лучами конического светового пучка, входящего в оптическую систему. Согласно Э. Аббе, для получения изображения решетки, даже самого нечеткого, в объектив должны попасть лучи любых двух порядков дифракционной картины, например, лучи, образующие центральный и, по крайней мере, первый дифракционный максимум. Вспомним, что для наклонного падения лучей на дифракционную решетку ее главная формула имеет вид: . Если свет падает под углом , а угол дифракции для первого максимума равен
, то формула приобретает вид
. За предел разрешения микроскопа следует принять постоянную дифракционной решетки, тогда
, где  - длина волны света.

Как видно из формулы, один из способов уменьшения предела разрешения микроскопа – использование света с меньшей длиной волны. В связи с этим применяют ультрафиолетовый микроскоп, в котором микрообъекты исследуются в ультрафиолетовых лучах. Принципиальная оптическая схема такого микроскопа аналогична схемам обычного микроскопа. Основное отличие заключается в использовании оптических устройств, прозрачных для УФ-света, и в особенностях регистрации изображения. Так как глаз не воспринимает ультрафиолетовое излучение (кроме того, оно обжигает глаза, т.е. является опасным для органа зрения), то употребляются фотопластинки, люминесцентные экраны или электронно-оптические преобразователи.

Если в пространство между объективом и покровным стеклом препарата поместить специальную жидкую среду, называемую иммерсией , то предел разрешения также уменьшается:
, где n – абсолютный показатель преломления иммерсии, A числовая апертура объектива . В качестве иммерсии используют воду (n = 1,33), кедровое масло (n = 1,515), монобромнафталин (n = 1,66) и др. Для каждого вида иммерсии изготавливают специальный объектив, и его можно применять только с данным видом иммерсии.

Еще один способ уменьшения предела разрешения микроскопа – это увеличение апертурного угла. Этот угол зависит от размеров объектива и расстояния от предмета до объектива. Однако расстояние от предмета до линзы нельзя изменять произвольно, оно постоянно для каждого объектива и приближать предмет нельзя. В современных микроскопах апертурный угол достигает 140 о (соответственно, u /2 = 70 о). С таким углом получают максимальные числовые апертуры и минимальные пределы разрешения.

Данные приведены для наклонного падения света на объект и длины волны 555 нм, к которой наиболее чувствителен глаз человека.

Обратите внимание на то, что окуляр совершенно не влияет на разрешающую способность микроскопа, он только создает увеличенное изображение объектива.

Технически возможно создать оптические микроскопы, объективы и окуляры которых дадут общее увеличение 1500-2000 и больше. Однако это нецелесообразно, так как возможность различить мелкие детали предмета ограничивается дифракционными явлениями. Вследствие этого изображение мельчайших деталей предмета теряет резкость, может возникнуть нарушение геометрического подобия изображения и предмета, соседние точки будут сливаться в одну, возможно полное исчезновение изображения. Поэтому в оптике существуют следующие понятия, которые характеризуют качество микроскопа:

Разрешающая способность микроскопа - свойство микроскопа давать раздельно изображение мелких деталей рассматриваемого предмета.

Предел разрешения - это наименьшее расстояние между двумя точками, которые видны в микроскопе раздельно.

Чем меньше предел разрешения, тем выше разрешающая способность микроскопа!

Предел разрешения обусловливает наименьший размер деталей, которые могут различаться в препарате с помощью микроскопа.

Теорию разрешающей способности микроскопа разработал директор завода К.Цейса в Йене профессор-оптик Э.Аббе (1840-1905). В качестве простейшего микропрепарата он взял дифракционную решетку (рис. 2), изучил механизм формирования изображения в микроскопе и показал следующее.

Введем понятиеапертурного угла - это угол между крайними лучами конического светового пучка, идущего от середины объекта в объектив (рис. 3,а ). Для создания изображения, то есть для разрешения объекта, достаточно, чтобы в объектив попали лучи, образующие максимумы только нулевого и первого порядка хотя бы с одной стороны (рис. 2 и 3,б ). Участие в образовании изображения лучей от большего количества максимумов повышает качество изображения, его контраст. Поэтому лучи, образующие эти максимумы, должны быть в пределах апертурного угла объектива.


а) б) в) г)

1- фронтальная линза объектива, 2 - объектив

Таким образом, если объектом является дифракционная решетка с периодом d и свет падает на нее нормально (рис.2 и 3,б ), то в формировании изображения обязательно должны участвовать лучи, образующие максимумы нулевого и первого порядков с обеих сторон, а угол j 1 - угол отклонения лучей, образующих максимум первого порядка, соответственно должен быть, в крайнем случае, равен углу U /2.

Если же взять решетку с меньшим периодом d ’, то угол j’ 1 будет больше угла U /2 и изображение не возникнет. Значит период решетки d можно принять за предел разрешения микроскопа Z . Тогда, используя формулу дифракционной решетки, запишем для k =1:

Заменяя d на Z , а j 1 на U /2, получим

. (6)

Во время микроскопии световые лучи падают на объект под разными углами. При наклонном падении лучей (рис.3,г ) предел разрешения уменьшается, так как в формировании изображения будут участвовать только лучи, образующие максимумы нулевого порядка и первого порядка с одной стороны, а угол j 1 будет равен апертурному углу U . Расчеты показывают, что формула для предела разрешения в этом случае принимает следующий вид:

. (7)

Если пространство между объектом и объективом заполнить иммерсионной средой с показателем преломления n , который больше показателя преломления воздуха, то длина волны света l n = l ¤ n . Подставляя это выражение в формулу для предела разрешения (7), получим

, или . (8)

Таким образом, формула (7) определяет предел разрешения для микроскопа с сухим объективом, а формула (8) -для микроскопа с иммерсионным объективом. Величины sin 0,5U и sin0,5U в этих формулах называют числовой апертурой объектива и обозначают буквой А . Учитывая это, формулу предела разрешения микроскопа в общем виде записывают так:

Как видно из формул (8) и (9), разрешающая способность микроскопа зависит от длины волны света, величины апертурного угла, показателя преломления среды между объективом и объектом, угла падения световых лучей на объект, но она не зависит от параметров окуляра. Окуляр никакой дополнительной информации о структуре объекта не дает, качества изображения не повышает, он лишь увеличивает промежуточное изображение.

Разрешающая способность микроскопа может быть повышена за счет использования иммерсии и уменьшения длины волны света. Повышение разрешающей способности при использовании иммерсии можно пояснить следующим образом. Если между объективом и объектом находится воздух (сухой объектив), то световой луч при переходе из покровного стекла в воздух, среду с меньшим показателем преломления, значительно изменяет свое направление в результате преломления, поэтому меньше лучей попадает в объектив. При использовании иммерсионной среды, показатель преломления которой приблизительно равен показателю преломления стекла, изменение хода лучей в среде не наблюдается и большее количество лучей попадает в объектив.

В качестве иммерсионной жидкости берут воду (n =1,33), кедровое масло (n =1,515) и др. Если максимальный апертурный угол у современных объективов достигает 140 0 , то для сухого объектива А =0,94, а для объектива с масляной иммерсией А =1,43. Если при расчете использовать длину волны света l = 555 нм, к которой наиболее чувствителен глаз, то предел разрешения сухого объектива составит 0,30 мкм, а с масляной иммерсией - 0,19 мкм. Значение числовой апертуры указывается на оправе объектива: 0,20; 0,40; 0,65 и др.

Повышение разрешающей способности оптического микроскопа за счет уменьшения длины волны света достигается при использовании ультрафиолетового излучения. Для этого имеются специальные ультрафиолетовые микроскопы с кварцевой оптикой и приспособлениями для наблюдения и фотографирования объектов. Так как в этих микроскопах используется свет с длиной волны примерно в два раза меньше, чем у видимого света, то они способны разрешать структуры препарата размерами около 0,1мкм. Ультрафиолетовая микроскопия имеет еще одно преимущество - с ее помощью можно исследовать неокрашенные препараты. Большинство биологических объектов прозрачны в видимом свете, так как не поглощают его. Однако они обладают избирательным поглощением в ультрафиолетовой области и, следовательно, легко различимы в ультрафиолетовых лучах.

Наибольшая разрешающая способность у электронного микроскопа, так как длина волны при движении электрона в 1000 раз меньше длины световой волны.

Полезное увеличение микроскопа ограничено его разрешающей способностью и разрешающей способностью глаза.

Разрешающая способность глаза характеризуется наименьшим углом зрения, при котором человеческий глаз еще различает раздельно две точки предмета. Она лимитируется дифракцией на зрачке и расстоянием между светочувствительными клетками сетчатки. Для нормального глаза наименьший угол зрения равен 1 минуте. Если предмет находится на расстоянии наилучшего зрения - 25 см, то этот угол соответствует предмету размером 70 мкм. Данную величину считают пределом разрешения невооруженного глаза Z r на расстоянии наилучшего зрения. Однако показано, что оптимальная величина Z r равна 140-280 мкм. При этом глаз испытывает наименьшее напряжение.

Полезным увеличением микроскопа называют его максимальное увеличение, при котором глаз еще в состоянии различать детали, равные по величине пределу разрешения микроскопа.

Линейное увеличение микроскопа равно отношению величины изображения предмета, расположенного на расстоянии наилучшего зрения, к величине самого предмета (см. формулу 1). Если за размер предмета примем предел разрешения микроскопа Z , а за размер изображения - предел разрешения невооруженного глаза на расстоянии наилучшего зрения Z r , то получим формулу полезного увеличения микроскопа:

Подставляя в эту формулу Z из выражения (9), получим

. (11)

Подставив в формулу (11) длину волны света 555 нм (555×10 -9 м), оптимальные величины пределов разрешения глаза 140-280 мкм (140-280×10 -6 м), найдем интервал значений полезного увеличения микроскопа

500 А < К п < 1000 А .

Например, при использовании лучших иммерсионных объективов с числовой апертурой 1,43 полезное увеличение будет составлять 700-1400, отсюда видно, что конструировать оптические микроскопы с большим увеличением нецелесообразно. Однако в настоящее время этот вопрос потерял свою остроту в связи с широким использованием в биологии и медицине электронного микроскопа, обеспечивающего увеличение до 600 000, а предел разрешения - до 0,1 нм.

Цель работы . Ознакомление с устройством микроскопа и определение его разрешающей способности.

Приборы и принадлежности : Микроскоп, металлическая пластинка с маленьким отверстием, осветительное зеркало, линейка со шкалой.

Введение

Микроскоп состоит из объектива и окуляра, которые представляют собой сложные системы линз. Ход лучей в микроскопе изображён на рис.1, на котором объектив и окуляр представлены одиночными линзами.

Рассматриваемый предмет АВ размещают немного дальше от главного фокуса объектива F об . Объектив микроскопа даёт действительное, обратное и увеличенное изображение предмета (AB на рис. 1), которое образуется за двойным фокусным расстоянием объектива. Увеличенное изображение рассматривается окуляром как лупой. Изображение предмета, рассматриваемое в окуляр, мнимое, обратное и увеличенное.

Расстояние между задним фокусом объектива и передним фокусом окуляра называется оптическим интервалом системы илиоптической длиной тубуса микроскопа.

Увеличение микроскопа можно определить по увеличению объектива и окуляра :

N = N об  N ок = ───── (1)

f об  f ок

где N об и N ок - увеличение объектива и окуляра соответственно; D - расстояние наилучшего зрения для нормального глаза (~25 см.) ;  - оптическая длина тубуса микроскопа; f об и f ок - главные фокусные расстояния объектива и окуляра.

При анализе формулы (1) можно сделать заключение, что в микроскопах с большим увеличением можно рассматривать любые мелкие предметы. Однако полезное увеличение, даваемое микроскопом, ограничивается дифракционными явлениями, которые становятся заметными при рассматривании предметов, размеры которых сравнимы с длинной световой волны.

Пределом разрешающей способности микроскопа называется наименьшее расстояние между точками, изображение которых в микроскопе получается раздельно.

Согласно теории Аббе предел разрешающей способности микроскопа определяет выражение:

d = ───── (2)

где d - линейный размер рассматриваемого предмета; - длина волны используемого света; n - показатель преломления среды между предметом и объективом;  - угол между главной оптической осью микроскопа и граничным лучом (рис. 2).

Величина A = nsin называется числовой апертурой объектива , а величина, обратная d, - разрешающей способностью микроскопа . Из выражения (2) следует что разрешающая способность микроскопа зависит от числовой апертуры объектива и длины волны света, которым освещается рассматриваемый предмет.

Если предмет находится в воздухе (n=1), то в микроскопе можно различить точки предмета, расстояние между которыми:

d = ─────

Для микроскопических предметов угол  близок к 90 градусам, тогда sin  1, откуда следует, что в микроскопе можно рассматривать предметы, находящиеся на расстоянии друг от друга ~ 0,61. В случае визуальных наблюдений (максимум чувствительности глаза приходится на зеленую область видимого спектра   550 нм) в микроскопе можно разглядеть предметы, находящиеся на расстоянии ~300 нм.

Как следует из выражения (2), разрешающую способность микроскопа можно увеличить путём уменьшения длины волны света, которым освещается предмет. Так, при фотографировании объектов в ультрафиолетовом свете (~ 250-300 нм) разрешающую способность микроскопа удаётся увеличить вдвое.

Как известно, основную долю информации об окружающем мире человек получает с помощью зрения. Глаз человека - сложный и совершенный прибор. Этот созданный природой прибор работает со светом - электромагнитным излучением, диапазон длин волн которого находится между 400 и 760 нанометрами. Цвет, который при этом воспринимает человек, изменяется от фиолетового до красного.

Электромагнитные волны, соответствующие видимому свету, взаимодействуют с электронными оболочками атомов и молекул глаза. Результат этого взаимодействия зависит от того, в каком состоянии находятся электроны этих оболочек. Свет может поглощаться, отражаться или рассеиваться. Что именно произошло со светом, может многое рассказать об атомах и молекулах, с которыми он взаимодействовал. Диапазон размеров атомов и молекул от 0,1 до десятков нанометров. Это во много раз меньше, чем длина волны света. Тем не менее, объекты именно таких размеров - назовем их нанообъектами - очень важно увидеть. Что же надо для этого сделать? Обсудим сначала, что может рассмотреть человеческий глаз.

Обычно, когда говорят о разрешающей способности того или иного оптического прибора, оперируют двумя понятиями. Одно из них - угловое разрешение, а второе - линейное разрешение. Эти понятия взаимосвязаны. К примеру, для человеческого глаза угловое разрешение составляет приблизительно 1 угловую минуту. При этом глаз может различить два точечных объекта, удаленных от него на 25–30 см, только тогда, когда расстояние между этими объектами больше чем 0,075 мм. Это вполне сравнимо с разрешением обычного компьютерного сканера. В самом деле, разрешение 600 точек на дюйм означает, что сканер может различить точки, расположенные на расстоянии 0,042 мм друг от друга.

Для того чтобы можно было различать объекты, расположенные на еще меньших расстояниях друг от друга, был придуман оптический микроскоп - прибор, увеличивающий разрешающую способность глаза. Выглядят эти приборы по-разному (что видно из рисунка 1), но принцип действия у них один тот же. Оптический микроскоп позволил отодвинуть предел разрешения до долей микрона. Уже 100 лет назад оптическая микроскопия сделала возможным изучать объекты микронных размеров. Однако тогда же стало ясно, что простым увеличением количества линз и улучшением их качества добиться дальнейшего увеличения разрешающей способности невозможно. Разрешение оптического микроскопа оказалось ограничено свойствами самого света, а именно его волновой природой.

Еще в конце позапрошлого века было установлено, что разрешение оптического микроскопа составляет . В этой формуле λ - длина волны света, а n sin u - числовая апертура объектива микроскопа, которая характеризует как микроскоп, так и то вещество, которое находится между объектом изучения и самой близкой к нему линзой микроскопа. И действительно, в выражение для числовой апертуры входят показатель преломления n среды, находящейся между объектом и объективом, и угол u между оптической осью объектива и самыми крайними лучами, которые выходят из объекта и могут попасть в этот объектив. Показатель преломления вакуума равен единице. У воздуха этот показатель очень близок к единице, у воды он составляет 1,33303, а у специальных жидкостей, используемых в микроскопии для получения максимального разрешения, n доходит до 1,78. Каким бы ни был угол u , величина sin u не может быть больше единицы. Таким образом, разрешение оптического микроскопа не превышает долей длины волны света.

Обычно считается, что разрешение составляет половину длины волны.

Интенсивность, разрешение и увеличение объекта - разные вещи. Можно сделать так, что расстояние между центрами изображений объектов, которые расположены в 10 нм друг от друга, будет 1 мм. Это будет соответствовать увеличению в 100 000 раз. Тем не менее, различить, один это объект или два, не получится. Дело в том, что изображения объектов, размеры которых очень малы по сравнению с длиной волны света, будут иметь одинаковые форму и размеры, не зависящие от формы самих объектов. Такие объекты называют точечными - их размерами можно пренебречь. Если такой точечный объект светится, то оптический микроскоп изобразит его в виде светлого кружка, окруженного светлыми и темными кольцами. Будем далее, для простоты, рассматривать именно источники света. Типичное изображение точечного источника света, полученное с помощью оптического микроскопа, показано на рисунке 2. Интенсивность светлых колец намного меньше, чем у кружочка, и убывает по мере удаления от центра изображения. Чаще всего видно только первое светлое кольцо. Диаметр первого темного кольца равен . Функция, которая описывает такое распределение интенсивности, называется функцией рассеяния точки. Эта функция не зависит от того, каково увеличение. Изображение нескольких точечных объектов будет представлять собой именно круги и кольца, как это видно из рисунка 3. Полученное изображение можно увеличивать, однако если изображения двух соседних точечных объектов сливаются, то они будут сливаться и дальше. Такое увеличение часто называют бесполезным - большие изображения просто будут более размытыми. Пример бесполезного увеличения показан на рисунке 4. Формула часто называется дифракционным пределом, и она настолько знаменита, что именно ее высекли на памятнике автору этой формулы - немецкому физику-оптику Эрнсту Аббе.

Конечно, со временем оптические микроскопы стали снабжать разнообразными устройствами, позволяющими запоминать изображения. Человеческий глаз дополнили сначала пленочные фото- и кинокамеры, а потом - камеры, в основе которых лежат цифровые устройства, преобразующие попадающий на них свет в электрические сигналы. Самыми распространенными из таких устройств являются ПЗС-матрицы (ПЗС расшифровывается как прибор с зарядовой связью). Количество пикселей в цифровых камерах продолжает расти, однако само по себе это не может улучшить разрешение оптических микроскопов.

Еще двадцать пять лет назад казалось, что дифракционный предел непреодолим и что, для того чтобы изучать объекты, размеры которых во много раз меньше, чем длина волны света, необходимо отказаться от света как такового. Именно таким путем пошли создатели электронных и рентгеновских микроскопов. Несмотря на многочисленные преимущества таких микроскопов, задача использования именно света для рассматривания нанообъектов оставалась. Причин для этого было много: удобство и простота работы с объектами, небольшое время, которое требуется для получения изображения, известные способы окрашивания образцов и многое другое. Наконец, после долгих лет напряженной работы стало возможным рассматривать нанообъекты с помощью оптического микроскопа. Наибольший прогресс в этом направлении достигнут в области люминесцентной микроскопии. Конечно, дифракционный предел никто не отменял, но его удалось обойти. В настоящее время существуют различные оптические микроскопы, позволяющие рассматривать объекты, размеры которых намного меньше длины волны того самого света, который создает изображения этих объектов. Все эти приборы объединяет один общий принцип. Попробуем пояснить, какой именно.

Из того, что уже говорилось о дифракционном пределе разрешения, ясно, что увидеть точечный источник не так уж сложно. Если этот источник обладает достаточной интенсивностью, его изображение будет отчетливо видно. Форма и размер этого изображения, как уже говорилось, будут определяться свойствами оптической системы. При этом, зная свойства оптической системы и будучи уверенными в том, что объект точечный, можно определить, где именно находится объект. Точность определения координат такого объекта достаточно высока. Иллюстрацией этого может служить рисунок 5. Координаты точечного объекта можно определить тем точнее, чем интенсивнее он светится. Еще в 80-х годах прошлого века с помощью оптического микроскопа умели определять положение отдельных светящихся молекул с точностью в 10–20 нанометров. Необходимым условием столь точного определения координат точечного источника является его одиночество. Ближайший к нему другой точечный источник должен находиться настолько далеко, чтобы исследователь точно знал, что обрабатываемое изображение соответствует одному источнику. Понятно, что это расстояние l должно удовлетворять условию . В этом случае анализ изображения может дать очень точные данные о положении самого источника.

Большинство объектов, размеры которых намного меньше разрешающей способности оптического микроскопа, можно представить как набор точечных источников. Источники света в таком наборе находятся друг от друга на расстояниях, намного меньших величины . Если эти источники будут светить одновременно, то сказать что-либо о том, где именно они расположены, будет невозможно. Тем не менее, если суметь заставить эти источники светить по очереди, то положение каждого них можно определить с высокой точностью. Если эта точность превышает расстояние между источниками, то, обладая знанием о положении каждого из них, можно узнать о том, каково их взаимное расположение. А это означает, что получена информация о форме и размерах объекта, который представлен как набор точечных источников. Другими словами, в таком случае можно рассмотреть в оптический микроскоп объект, размеры которого меньше, чем дифракционный предел!

Таким образом, ключевым моментом является получение информации о различных частях нанообъекта независимо друг от друга. Существуют три основные группы методов, позволяющие сделать это.

Первая группа методов целенаправленно заставляет светить ту или иную часть исследуемого объекта. Самый известный из этих методов - сканирующая оптическая микроскопия ближнего поля. Рассмотрим ее подробнее.

Если внимательно изучить те условия, которые подразумеваются, когда речь идет о дифракционном пределе, обнаружится, что расстояния от объектов до линз значительно больше длины волны света. На расстояниях, сравнимых и меньших этой длины волны, картина получается другой. Вблизи любого объекта, попавшего в электромагнитное поле световой волны, существует переменное электромагнитное поле, частота изменения которого такая же, как частота изменения поля в световой волне. В отличие от световой волны, это поле быстро затухает по мере удаления от нанообъекта. Расстояние, на котором происходит уменьшение интенсивности, например, в e раз, сравнимо с размерами объекта. Таким образом, электромагнитное поле оптической частоты оказывается сконцентрированным в объеме пространства, размер которого намного меньше, чем длина волны света. Любой нанообъект, попавший в эту область, будет так или иначе взаимодействовать со сконцентрированным полем. Если тот объект, с помощью которого осуществляется это концентрирование поля, последовательно перемещать по какой-либо траектории вдоль изучаемого нанообъекта и регистрировать свет, излучаемый этой системой, то можно построить изображение по отдельным точкам, лежащим на этой траектории. Конечно, в каждой точке изображение будет выглядеть так, как показано на рисунке 2, но разрешение при этом будет определяться тем, насколько удалось сконцентрировать поле. А это, в свою очередь, определяется размерами того объекта, с помощью которого это поле концентрируется.

Самым распространенным способом такой концентрации поля является изготовление очень маленького отверстия в металлическом экране. Обычно это отверстие находится на конце заостренного и покрытого тонкой пленкой металла световода (световод часто называется оптическим волокном и широко используется для передачи данных на большие расстояния). Сейчас удается изготавливать отверстия с диаметрами от 30 до 100 нм. Таким же по величине получается и разрешение. Приборы, работающие по этому принципу, и называются сканирующими оптическими микроскопами ближнего поля. Они появились 25 лет тому назад.

Суть второй группы методов сводится к следующему. Вместо того чтобы заставлять соседние нанообъекты светить по очереди, можно использовать объекты, которые светятся разными цветами. В этом случае с помощью светофильтров, пропускающих свет того или иного цвета, можно определять положение каждого из объектов, а потом - составлять единую картину. Это очень похоже на то, что изображено на рисунке 5, только цвета для трех изображений будут различными.

Последняя группа методов, позволяющих преодолеть дифракционный предел и рассмотреть нанообъекты, использует свойства самих светящихся объектов. Существуют такие источники, которые можно «включать» и «выключать» с помощью специально подобранного света. Такие переключения происходят статистически. Иначе говоря, если имеется много переключаемых нанообъектов, то, подобрав длину волны света и его интенсивность, можно заставить «выключиться» только часть из этих объектов. Остальные объекты будут продолжать светить, и можно получить от них изображение. После этого надо «включить» все источники и снова «выключить» часть из них. Набор оставшихся «включенными» источников будет отличаться от набора, который остался «включенным» в первый раз. Повторяя такую процедуру много раз, можно получить большой набор изображений, отличающихся друг от друга. Анализируя такой набор, можно установить местоположение большой доли всех источников с очень высокой точностью, значительно превышающей дифракционный предел. Пример сверхразрешения, полученного таким способом, приведен на рисунке 6.

В настоящее время оптическая микроскопия со сверхразрешением быстро развивается. Можно со всей уверенностью предполагать, что в грядущие годы эта область будет привлекать все большее число исследователей, и хочется верить, что среди них будут и читатели этой статьи.

Методические указания

Для изучения объектов имеющих малые размеры и неразличимых невооруженным глазом, используют специальные оптические приборы – микроскопы. В зависимости от назначения различают: упрощенные, рабочие, исследовательские и универсальные. По используемому источнику освещения микроскопы подразделяются на: световые, люминесцентные, ультрафиолетовые, электронные, нейтронные, сканирующие, тоннельные. Конструкция любого из перечисленных микроскопов включает механическую и оптическую части. Механическая часть служит для создания условий наблюдения – размещения объекта, фокусировки изображения, оптическая – получения увеличенного изображения.

Устройство светового микроскопа

Микроскоп называется световым, так как он обеспечивает возможность изучать объект в проходящем свете в светлом поле зрения. На (рис.Внешний вид Биомед 2) представлен общий вид микроскопа Биомед-2.

  1. Штатив;
  2. Ограничительный винт;
  3. Винт крепления препарато-держателя;
  4. Держатель препарата;
  5. Ручка грубой настройки;
  6. Ручка точной настройки;
  7. Ручка регулировки высоты конденсора;
  8. Винты центровки конденсора;
  9. конденсор;
  10. Окуляр;
  11. Монокулярная головка;
  12. Револьвер на 4 позиций;
  13. Объективы;
  14. Предметный столик;
  15. Осветитель;
  16. Основание;
  1. Окуляр;
  2. Монокулярная головка;
  3. Револьвер на 4 позиций;
  4. Объективы;
  5. Предметный столик;
  6. Кольцо регулировки ирисовой диафрагмы;
  7. Конденсор;
  8. Осветитель;
  9. Основание;
  10. Штатив;
  11. Измерительный нониус;
  12. Ограничительный винт;
  13. Держатель препарата;
  14. Ручка грубой настройки;
  15. Ручка точной настройки;
  16. Ручка перемещения столика по X(слева на право);
  17. Ручка перемещения столика по Y(от себя к себе);
  18. Выключатель;
  19. Ручка регулировки яркости

Механическая часть микроскопа состоит из основания микроскопа, подвижного предметного столика и револьверного устройства.

Фокусировка на объект осуществляется перемещением предметного столика путем вращения ручек грубой и тонкой настройки.

Диапазон грубой фокусировки микроскопа – 40 мм.

Конденсор крепится на кронштейне и располагается между предметным столиком и коллекторной линзой. Его движение производиться вращением ручкой регулировки высоты конденсора. Общий вид его показан на (рис.???) Двухлинзовый конденсор с апертурой 1,25 обеспечивает освещение полей на объекте при работе с объективами увеличением от 4 до 100 крат.

Предметный столик укреплен на кронштейне. Координатное перемещение предметного столика, возможно, при вращении рукояток. Крепление объекта на столике осуществляется держателями препарата. Держатели можно перемещать относительно друг друга.

Координаты объекта и величина перемещения отсчитывается по шкалам с ценой деления 1 мм и нониусам с ценой деления 0,1 мм. Диапазон перемещения объекта в продольном направлении 60 мм, в поперечном направлении – 40 мм. Конденсор

Конденсор

Микроскоп оборудован узлом крепления конденсора с возможностью центрировочного и фокусировочного перемещения.

В качестве базового в микроскопе используется универсальный конденсор, установленный в держатель; при использовании иммерсионного масла - числовая апертура составляет 1,25.

При настройке освещения плавное изменение числовой апертуры пучка лучей освещающих препарат, осуществляется с помощью апертурной диафрагмы.

Конденсор устанавливается в держатель конденсора в фиксированное положение и закрепляется стопорным винтом.

Винты для центрировки конденсора используются в процессе настройки освещения для перемещения конденсора в плоскости, перпендикулярной к оптической оси микроскопа, при центрировке изображения полевой диафрагмы относительно краев поля зрения.

Рукоятка перемещения конденсора вверх-вниз, расположена на левой стороне кронштейна держателя конденсора, используются при настройке освещения для фокусирования на изображение полевой диафрагмы.

Светофильтры устанавливаются в поворотное кольцо, расположенное в нижней части конденсора.

Оптическая часть микроскопа

Состоит из осветительной и наблюдательной систем. Осветительная система равномерно освещает поля зрения. Наблюдательная система предназначена для увеличения изображения наблюдаемого объекта.

Осветительная система

Находится под предметным столиком. Она состоит из коллекторной линзы установленной в корпусе, которая ввинчивается в отверстие основания микроскопа и патрона с установленной в него лампой. Патрон с лампой установлен внутри основания микроскопа. Питание осветителя микроскопа обеспечивается от сети переменного тока через трех-контактый провод питания, подключаемый с помощью штекера к сети питания. Включение лампы осветителя осуществляется выключателем, расположенным на основании микроскопа.

Наблюдательная система

Состоит из объективов, монокулярной насадки и окуляров.

Объективы

Объективы составляют самую важную, наиболее ценную и хрупкую часть микроскопа. От них зависит увеличение, разрешающая способность и качество изображения. Они представляют собой систему взаимно центрированных линз, заключенных в металлическую оправу. На верхнем конце оправы имеется резьба, при помощи которой объектив крепится в гнезде револьвера. Передняя (ближайшая к объекту) линза в объективе называется фронтальной, единственная в объективе, производящая увеличение. Все остальные линзы объектива называются коррекционными и служат для устранения недостатков оптического изображения.

При прохождении через линзы пучка световых лучей с разной длиной волны возникает радужное окрашивание изображения – хроматическая аберрация. Неодинаковое преломление лучей на кривой поверхности линзы приводит к сферической аберрации, возникающей вследствие неравномерного преломления центральных и периферических лучей. В результате точечное изображение получается в виде размытого кружка.

Объективы, входящие в комплект микроскопа, рассчитаны на оптическую длину тубуса 160мм, высоту 45 мм и толщину покровного стекла препарата мм.

Объективы увеличением более 10X снабжены пружинящими оправами, предохраняющими от повреждения препарат и фронтальные линзы объективов при фокусировании на поверхность препарата.

На корпусе объектива в соответствии с увеличением может быть нанесено цветное кольцо, а также:

  • числовая апертура;
  • оптическая длина тубуса 160;
  • толщина покровного стекла 0,17, 0 или -";
  • вид иммерсии - масляная OIL (М.И.) или водная В.И.;

Объективы с маркировкой 0,17 рассчитаны для исследования препаратов только с покровными стеклами толщиной 0,17 мм. Объективы с маркировкой 0 рассчитаны для исследования препаратов только без покровных стекол. Объективы слабого увеличения (2,5 - 10), а также иммерсионные объективы могут быть использованы при исследовании препаратов как с покровным стеклом, так и без покровного стекла. Эти объективы маркируются значком -.

Окуляры

Окуляр микроскопа состоит из двух линз: глазной (верхней) и собирательной (нижней). Между линзами находится диафрагма. Боковые лучи диафрагма задерживает, близкие к оптической оси пропускает, что усиливает контрастность изображения. Назначение окуляра состоит в увеличении изображения, которое дает объектив. Окуляры имеют собственное увеличение ×5, ×10, ×12.5, ×16 и ×20, что указано на оправе.

Выбор окуляров зависит от комплекта применяемых объективов. При работе с объективами ахроматами, ахростигматами и ахрофлюарами целесообразно использовать окуляры с линейным полем зрения не более 20 мм, с объективами планахроматами и планапохроматами - окуляры с линейным полем зрения 20; 22 и 26,5 мм.

Дополнительно микроскоп может комплектоваться окуляром WF10/22 со шкалой; цена деления шкалы 0,1 мм.

Характеристики микроскопов

Увеличение микроскопа

К основным характеристикам микроскопа относятся увеличение и разрешающая способность. Общее увеличение, которое дает микроскоп, определяется как произведение увеличения объектива на увеличение окуляра. Однако увеличение не характеризует качества изображения, оно может быть четким и нечетким. Четкость получаемого изображения характеризуется разрешающей способностью микроскопа, т.е. той наименьшей величиной объектов или их деталей, которые можно увидеть с помощью этого прибора.

Общее увеличение Г микроскопа при визуальном наблюдении определяется по формуле: Г = βок × βок, где:

βоб - увеличение объектива (маркируется на объективе); βок - увеличение окуляра (маркируется на окуляре).

Диаметр поля, наблюдаемого в объекте, Доб мм, определяется по формуле: Доб= Док × βоб. Док –диаметр окулярного поля зрения(маркируется на окуляре)мм. Расчетные значения увеличения микроскопа и диаметра наблюдаемого поля на объекте приведены в таблице 3.

Таблица 3
Увеличение объектива Увеличение микроскопа и наблюдаемое поле

на объекте с окуляром:

5/26* 10/22 15/16*
Г Доб, мм Г Доб, мм Г Доб, мм
4 20 4,0 50 4,5 64 3,75
10 50 2,0 100 1,8 160 1,5
20 100 1,0 200 0,9 320 0,75
40 200 0,5 420 0,45 640 0,38
100 500 0,2 1000 0,18 1600 0,15
  • По дополнительному заказу

Разрешающая способность микроскопа

Разрешающая способность микроскопа определяется минимальным (разрешающим) расстоянием между двумя точками (или двумя тончайшими штрихами), видимыми раздельно, и вычисляется по формуле

D=λ/(A1+A2) , где d – минимальное (разрешающее) расстояние между двумя точками (штрихами); λ – длина волны ис- пользуемого света; A1 и А2 – числовая апертура объектива (обозначена на его оправе) и конденсора.

Увеличить разрешающую способность (т.е. уменьшить абсолютную величину d, так как это обратные величины) можно следующими путями: освещать объект светом с более короткой длиной волны λ (например, ультрафиолетовыми или коротковолновыми лучами), использовать объективы с большей апертурой А1 или повышать апертуру конденсора А2.

Рабочее расстояние объектива

Микроскопы снабжают четырьмя съемными объективами с собственными увеличениями 4×, 10×, 40× и 100×, обозначенными на металлической оправе. Увеличение объектива зависит от кривизны основной фронтальной линзы: чем больше кривизна, тем короче фокусное расстояние и тем больше увеличение. Это необходимо помнить при микроскопировании – чем большее увеличение дает объектив, тем меньше свободное рабочее расстояние и тем ниже следует опускать его над плоскостью препарата.

Иммерсия

Все объективы разделяются на сухие и иммерсионные, или погружные. Сухим называется такой объектив, между фронтальной линзой которого и рассматриваемым препаратом находится воздух. При этом ввиду разницы показателя преломления стекла (1,52) и воздуха (1,0) часть световых лучей отклоняется и не попадает в глаз наблюдателя. Объективы сухой системы имеют обычно большое фокусное расстояние и дают малое (10×) или среднее (40×) увеличение.

Иммерсионными, или погружными, называют такие объективы, между фронтальной линзой которых и препаратом помещается жидкая среда с показателем преломления, близким к показателю преломления стекла. В качестве иммерсионной среды используют обычно кедровое масло. Можно использовать также воду, глицерин, прозрачные масла, монобромнафталин и др. При этом между фронтальной линзой объектива и препаратом устанавливается однородная (гомогенная) среда (стекло препарата – масло – стекло объ- ектива) с одинаковым показателем преломления. Благодаря этому все лучи, не преломляясь и не изменяя направления, попадают в объектив, создавая условия наилучшего освещения препарата. Величина (n) показателя преломления равна для воды 1,33, для кедрового масла 1,515, для монобромнафталина 1,6.

Техника микроскопирования

Микроскоп при помощи кабеля питания подключают к электрической сети. С помощью револьвера устанавливают в ход лучей объектив с увеличением ×10. Легкий упор и звук щелчка пружины револьвера свидетельствуют о том, что объектив установлен по оптической оси. Ручкой грубой фокусировки опускают объектив на расстояние 0,5 – 1,0 см от предметного столика.

Правила работы с сухими объективами.

Приготовленный препарат помещают на предметный столик и закрепляют зажимом. С помощью сухого объектива с увеличением ×10 просматривают несколько полей зрения. Передвигают предметный столик боковыми винтами. Нужный для исследования участок препарата устанавливают в центре поля зрения. Поднимают тубус и вращением револьвера переводят объектив с увеличением ×40, наблюдая сбоку, макрометрическим винтом снова опускают тубус с объективом почти до соприкосновения с препаратом. Смотрят в окуляр, очень медленно поднимают тубус до появления контуров изображения. Точную фокусировку производят с помощью микрометрического винта, вращая его в ту или другую сторону, но не более чем на один полный оборот. Если при вращении микрометрического винта чувствуется сопротивление, значит, ход его пройден до конца. В этом случае поворачивают винт на один-два полных оборота в обратную сторону, снова находят изображение при помощи макрометрического винта и переходят к работе с микрометрическим винтом.

Полезно приучить себя при микроскопировании держать оба глаза открытыми и пользоваться ими попеременно, так как при этом меньше утомляется зрение.

При смене объективов не следует забывать, что разрешающая способность микроскопа зависит от соотношения апертуры объектива и конденсора. Числовая апертура объектива с увеличением ×40 составляет 0,65, неиммергированного конденсора – 0,95. Привести их в соответствие практически можно следующим приемом: сфокусировав препарат с объективом, следует вынуть окуляр и, глядя в тубус, прикрывать ирисовую диафрагму конденсора до тех пор, пока ее края не станут видны у границы равномерно освещенной задней линзы объектива. В этот момент числовые апертуры конденсора и объектива будут примерно равны.

Правила работы с иммерсионным объективом.

На препарат (лучше фиксированный и окрашенный) наносят небольшую каплю иммерсионного масла. Поворачивают револьвер и устанавливают по центральной оптической оси иммерсионный объектив с увеличением 100×. Конденсор поднимают вверх до упора. Ирисовую диафрагму конденсора открывают полностью. Глядя сбоку, макрометрическим винтом опускают тубус до погружения объектива в масло, почти до соприкосновения линзы с предметным стеклом препарата. Это нужно проводить очень осторожно, чтобы фронтальная линза не сместилась и не получила повреждения. Смотрят в окуляр, очень медленно вращают макрометрический винт на себя и, не отрывая объектив от масла, приподнимают тубус до появления контуров объекта. При этом следует помнить, что свободное рабочее расстояние в иммерсионном объективе равно 0,1 – 0,15 мм. Затем точную фокусировку производят макрометрическим винтом. Рассматривают в препарате несколько полей зрения, передвигая столик боковыми винтами. По окончании работы с иммерсионным объективом поднимают тубус, снимают препарат и осторожно протирают фронтальную линзу объектива сначала сухой мягкой хлопчатобумажной салфеткой, затем той же салфеткой, но слегка смоченной чистым бензином. Оставлять масло на поверхности линзы нельзя, так как оно способствует оседанию пыли и может привести со временем к повреждению оптики микроскопа. Препарат освобождают от масла сначала кусочком фильтровальной бумаги, затем обрабатывают стекло бензином или ксилолом.