• Jednotkou merania tlaku v SI je pascal (ruské označenie: Pa; medzinárodné: Pa) = N/m 2
  • Prevodná tabuľka pre jednotky merania tlaku. Pa; MPa; bar; bankomat; mmHg; mm H.S.; m w.st., kg/cm2; psf; psi; palce Hg; palcov v.st. nižšie
  • Vezmite prosím na vedomie sú tam 2 tabuľky a zoznam. Tu je ďalší užitočný odkaz:
Prevodná tabuľka pre jednotky merania tlaku. Pa; MPa; bar; bankomat; mmHg; mm H.S.; m w.st., kg/cm2; psf; psi; palce Hg; palcov v.st. Pomer jednotiek tlaku.
V jednotkách:
Pa (N/m2) MPa bar atmosféru mmHg čl. mm in.st. m in.st. kgf/cm2
Treba vynásobiť:
Pa (N/m2) - pascal, jednotka tlaku SI 1 1*10 -6 10 -5 9.87*10 -6 0.0075 0.1 10 -4 1.02*10 -5
MPa, megapascal 1*10 6 1 10 9.87 7.5*10 3 10 5 10 2 10.2
bar 10 5 10 -1 1 0.987 750 1.0197*10 4 10.197 1.0197
atm, atmosféra 1.01*10 5 1.01* 10 -1 1.013 1 759.9 10332 10.332 1.03
mmHg Art., mm ortuti 133.3 133.3*10 -6 1.33*10 -3 1.32*10 -3 1 13.3 0.013 1.36*10 -3
mm w.c., mm vodného stĺpca 10 10 -5 0.000097 9.87*10 -5 0.075 1 0.001 1.02*10 -4
m w.st., meter vodného stĺpca 10 4 10 -2 0.097 9.87*10 -2 75 1000 1 0.102
kgf/cm 2, kilogram-sila na štvorcový centimeter 9.8*10 4 9.8*10 -2 0.98 0.97 735 10000 10 1
47.8 4.78*10 -5 4.78*10 -4 4.72*10 -4 0.36 4.78 4.78 10 -3 4.88*10 -4
6894.76 6.89476*10 -3 0.069 0.068 51.7 689.7 0.690 0.07
Palce Hg / palce Hg 3377 3.377*10 -3 0.0338 0.033 25.33 337.7 0.337 0.034
Palce v.st. / palce H2O 248.8 2.488*10 -2 2.49*10 -3 2.46*10 -3 1.87 24.88 0.0249 0.0025
Prevodná tabuľka pre jednotky merania tlaku. Pa; MPa; bar; bankomat; mmHg; mm H.S.; m w.st., kg/cm2; psf; psi; palce Hg; palce h.st..
Ak chcete previesť tlak v jednotkách: V jednotkách:
psi libra štvorcových stôp (psf) psi palec / libra štvorcových palcov (psi) Palce Hg / palce Hg Palce v.st. / palce H2O
Treba vynásobiť:
Pa (N/m 2) - jednotka tlaku SI 0.021 1.450326*10 -4 2.96*10 -4 4.02*10 -3
MPa 2.1*10 4 1.450326*10 2 2.96*10 2 4.02*10 3
bar 2090 14.50 29.61 402
bankomat 2117.5 14.69 29.92 407
mmHg čl. 2.79 0.019 0.039 0.54
mm in.st. 0.209 1.45*10 -3 2.96*10 -3 0.04
m in.st. 209 1.45 2.96 40.2
kgf/cm2 2049 14.21 29.03 394
psi libra štvorcových stôp (psf) 1 0.0069 0.014 0.19
psi palec / libra štvorcových palcov (psi) 144 1 2.04 27.7
Palce Hg / palce Hg 70.6 0.49 1 13.57
Palce v.st. / palce H2O 5.2 0.036 0.074 1

Podrobný zoznam tlakových jednotiek, jeden pascal je:

  • 1 Pa (N/m 2) = 0,0000102 Atmosféra (metrická)
  • 1 Pa (N/m2) = 0,0000099 Atmosféra (štandard) = štandardná atmosféra
  • 1 Pa (N/m2) = 0,00001 bar / bar
  • 1 Pa (N/m2) = 10 Barad / Barad
  • 1 Pa (N/m2) = 0,0007501 Centimetre Hg. čl. (0°C)
  • 1 Pa (N/m2) = 0,0101974 centimetrov in. čl. (4°C)
  • 1 Pa (N/m2) = 10 Dyn/cm2
  • 1 Pa (N/m2) = 0,0003346 stopa vody (4 °C)
  • 1 Pa (N/m2) = 10-9 gigapascalov
  • 1 Pa (N/m2) = 0,01
  • 1 Pa (N/m2) = 0,0002953 Dumov Hg. / palec ortuti (0 °C)
  • 1 Pa (N/m2) = 0,0002961 palca Hg. čl. / palec ortuti (15,56 °C)
  • 1 Pa (N/m2) = 0,0040186 Dumov v.st. / palec vody (15,56 °C)
  • 1 Pa (N/m 2) = 0,0040147 Dumov v.st. / palec vody (4 °C)
  • 1 Pa (N/m 2) = 0,0000102 kgf/cm 2 / Kilogramová sila/centimeter 2
  • 1 Pa (N/m 2) = 0,0010197 kgf/dm 2 / Kilogramová sila/decimeter 2
  • 1 Pa (N/m2) = 0,101972 kgf/m2 / Kilogramová sila/meter 2
  • 1 Pa (N/m 2) = 10 -7 kgf/mm 2 / Kilogramová sila/milimeter 2
  • 1 Pa (N/m2) = 10-3 kPa
  • 1 Pa (N/m2) = 10-7 kiloundová sila/štvorcový palec
  • 1 Pa (N/m2) = 10-6 MPa
  • 1 Pa (N/m2) = 0,000102 Metrov st. / meter vody (4 °C)
  • 1 Pa (N/m2) = 10 mikrobarov / mikrobarov (barye, barrie)
  • 1 Pa (N/m2) = 7,50062 mikrónov Hg. / mikrón ortuti (militorr)
  • 1 Pa (N/m2) = 0,01 milibarov
  • 1 Pa (N/m2) = 0,0075006 (0 °C)
  • 1 Pa (N/m2) = 0,10207 mm š. / Milimeter vody (15,56 °C)
  • 1 Pa (N/m2) = 0,10197 mm w.st. / Milimeter vody (4 °C)
  • 1 Pa (N/m2) = 7,5006 militorr / militorr
  • 1 Pa (N/m2) = 1N/m2 / Newton/meter štvorcový
  • 1 Pa (N/m2) = 32,1507 denných uncí/sq. palec / unca sila (avdp) / palec štvorcový
  • 1 Pa (N/m2) = 0,0208854 libier sily na meter štvorcový. ft / sila libry/štvorcová stopa
  • 1 Pa (N/m2) = 0,000145 libier sily na meter štvorcový. palec / sila libry / palec štvorcový
  • 1 Pa (N/m2) = 0,671969 libier na štvorcový meter. ft / libra/štvorcová stopa
  • 1 Pa (N/m2) = 0,0046665 libry na štvorcový meter. palec / Poundal / palec štvorcový
  • 1 Pa (N/m2) = 0,0000093 Dlhé tony na meter štvorcový. stopa / tona (dlhá) / stopa 2
  • 1 Pa (N/m2) = 10 -7 dlhých ton na meter štvorcový. palec / tona (dlhá)/palec 2
  • 1 Pa (N/m2) = 0,0000104 Krátke tony na meter štvorcový. ft / Ton (krátke) / stopa 2
  • 1 Pa (N/m 2) = 10 -7 ton na štvorcový meter. palec / tona / palec 2
  • 1 Pa (N/m2) = 0,0075006 Torr / Torr
  • tlak v pascaloch a atmosférach, previesť tlak na pascaly
  • atmosférický tlak rovná XXX mmHg. vyjadrite to v pascaloch
  • jednotky tlaku plynu - preklad
  • jednotky tlaku tekutiny - preklad

Prevodník dĺžky a vzdialenosti Prevodník hmotnosti Prevodník objemu hromadné produkty a potravinárske výrobky Prevodník plochy Prevodník objemu a jednotiek v kulinárske recepty Menič teploty Menič tlaku, mechanické namáhanie, Youngov modul Prevodník energie a práce Výkonový menič Silový menič Časový menič Lineárny rýchlostný menič Plochý uhol Menič tepelnej účinnosti a palivovej účinnosti Prevodník čísel v rôzne systémy zápis Prevodník merných jednotiek množstva informácií Výmenné kurzy Rozmery dámske oblečenie a obuvi Veľkosti pánskeho oblečenia a obuvi Menič uhlovej rýchlosti a frekvencie otáčania Menič zrýchlenia Menič uhlového zrýchlenia Menič hustoty Menič špecifického objemu Moment meniča zotrvačnosti Moment meniča sily Menič krútiaceho momentu Menič špecifické teplo spaľovanie (hmotnostne) Hustota energie a merné teplo spaľovacieho meniča (objemovo) Prevodník rozdielu teplôt Koeficient tepelnej rozťažnosti meniča Tepelný odporový menič Menič mernej tepelnej vodivosti Menič mernej tepelnej kapacity Menič výkonu Energia a tepelné žiarenie Konvertor hustoty tepelného toku Koeficient prestupu tepla konvertor Konvertor objemového prietoku Konvertor hmotnostného prietoku Konvertor molárneho prietoku Konvertor hustoty hmotnostného prietoku Konvertor molárnej koncentrácie Hmotnostná koncentrácia v roztoku Konvertor dynamického (absolútneho) viskozity Kinematický prevodník viskozity Konvertor povrchové napätie Prevodník paropriepustnosti Prevodník hustoty toku vodnej pary Prevodník hladiny zvuku Prevodník citlivosti mikrofónu Prevodník hladiny akustického tlaku (SPL) Prevodník hladiny akustického tlaku s voliteľným referenčným tlakom Prevodník jasu Prevodník svetelnej intenzity Prevodník osvetlenia Prevodník rozlíšenia počítačovej grafiky Prevodník frekvencie a vlnovej dĺžky Optický výkon v dioptriách A ohniskovej vzdialenosti Optický výkon v dioptriách a zväčšenie šošovky (×) Prevodník elektrického náboja Lineárny prevodník hustoty náboja Prevodník hustoty povrchového náboja Prevodník hustoty náboja Objemový prevodník hustoty náboja elektrický prúd Prevodník hustoty lineárneho prúdu Prevodník hustoty povrchového prúdu Prevodník intenzity elektrického poľa Prevodník elektrostatického potenciálu a napätia Prevodník elektrického odporu Prevodník elektrického odporu Prevodník elektrickej vodivosti Prevodník elektrickej vodivosti Prevodník elektrickej vodivosti Prevodník elektrickej kapacity Indukčnosť Konvertor American Wire Gauge (mV dB alebo Úrovne konvertora) dBm dB ), watty a iné jednotky Magnetomotorický menič sily Menič intenzity magnetického poľa Menič magnetického toku Magnetoindukčný menič Žiarenie. Konvertor dávkového príkonu absorbovaného ionizujúceho žiarenia Rádioaktivita. Rádioaktívny rozpadový konvertor Žiarenie. Prevodník dávok expozície Žiarenie. Prevodník absorbovanej dávky Prevodník desiatkovej predpony Prenos údajov Typografia a zobrazovanie Prevodník jednotiek Drevo Objem Prevodník jednotiek Výpočet molárnej hmotnosti Periodická tabuľka chemické prvky D. I. Mendelejev

1 megapascal [MPa] = 0,101971621297793 kilogram-sila na meter štvorcový. milimeter [kgf/mm²]

Počiatočná hodnota

Prevedená hodnota

pascal exapascal petapascal terapascal gigapascal megapascal kilopascal hektopascal decapascal decipascal centipascal milipascal mikropascal nanopascal pikopascal femtopascal attopascal newton na meter štvorcový meter newton na meter štvorcový centimeter newtonov na meter štvorcový milimeter kilonewton na meter štvorcový meter bar milibar mikrobar dyne na štvorcový. centimeter kilogram-sila na meter štvorcový. meter kilogram-sila na meter štvorcový centimeter kilogram-sila na meter štvorcový. milimeter gram-sila na meter štvorcový centimeter ton-force (kor.) na štvorcový meter. ft ton-force (kor.) na štvorcový palec ton-sila (dlhá) na štvorcový. ft tonová sila (dlhá) na štvorcový palec kiloundová sila na štvorcový palec kiloundová sila na štvorcový palec lbf na štvorcový ft lbf na štvorcový palec psi libra na štvorcový stopa torr centimeter ortuti (0°C) milimeter ortuti (0°C) palec ortuti (32°F) palec ortuti (60°F) centimeter vody. kolóna (4 °C) mm vody. kolóna (4 °C) palca vody. stĺpec (4°C) stopa vody (4°C) palec vody (60°F) stopa vody (60°F) technická atmosféra fyzická atmosféra decibar steny na meter štvorcový piezobárium (bárium) Planckov tlakomer morská voda stopa morskej vody (pri 15°C) meter vody. kolóna (4°C)

Viac o tlaku

Všeobecné informácie

Vo fyzike je tlak definovaný ako sila pôsobiaca na jednotku plochy povrchu. Ak na jednu väčšiu a jednu menšiu plochu pôsobia dve rovnaké sily, potom tlak na menšiu plochu bude väčší. Súhlaste, je oveľa horšie, ak vám niekto, kto nosí ihličky, stúpi na nohu, ako ten, kto nosí tenisky. Ak napríklad pritlačíte čepeľ ostrého noža na paradajku alebo mrkvu, zelenina sa rozreže na polovicu. Povrch čepele v kontakte so zeleninou je malý, takže tlak je dostatočne vysoký na to, aby túto zeleninu nakrájal. Ak zatlačíte rovnakou silou na paradajku alebo mrkvu tupým nožom, zelenina sa s najväčšou pravdepodobnosťou nerozreže, pretože povrch noža je teraz väčší, čo znamená, že tlak je menší.

V sústave SI sa tlak meria v pascaloch alebo newtonoch na meter štvorcový.

Relatívny tlak

Niekedy sa tlak meria ako rozdiel medzi absolútnym a atmosférickým tlakom. Tento tlak sa nazýva relatívny alebo pretlak a meria sa napríklad pri kontrole tlaku pneumatiky auta. Meracie prístrojeČasto, aj keď nie vždy, je zobrazený relatívny tlak.

Atmosférický tlak

Atmosférický tlak je tlak vzduchu v danom mieste. Zvyčajne sa vzťahuje na tlak stĺpca vzduchu na jednotku plochy povrchu. Zmeny atmosférického tlaku ovplyvňujú počasie a teplotu vzduchu. Ľudia a zvieratá trpia silnými zmenami tlaku. Nízky krvný tlak spôsobuje u ľudí a zvierat problémy rôznej závažnosti, od psychickej a fyzickej nepohody až po smrteľné choroby. Z tohto dôvodu sú kabíny lietadiel udržiavané nad atmosférickým tlakom v danej výške, pretože atmosférický tlak v cestovnej výške je príliš nízky.

Atmosférický tlak klesá s nadmorskou výškou. Ľudia a zvieratá žijúce vysoko v horách, ako sú Himaláje, sa takýmto podmienkam prispôsobujú. Cestovatelia by na druhej strane mali brať potrebné opatrenia preventívne opatrenia, aby ste neochoreli kvôli tomu, že telo nie je zvyknuté na taký nízky tlak. Horolezci môžu napríklad trpieť výškovou chorobou, ktorá súvisí s nedostatkom kyslíka v krvi a kyslíkovým hladovaním organizmu. Toto ochorenie je nebezpečné najmä pri dlhodobom pobyte v horách. Exacerbácia výškovej choroby vedie k závažným komplikáciám, ako je akútna horská choroba, vysokohorský pľúcny edém, vysokohorský edém mozgu a extrémna horská choroba. Nebezpečenstvo nadmorskej výšky a horskej choroby začína vo výške 2400 metrov nad morom. Aby ste sa vyhli výškovej chorobe, lekári odporúčajú nepoužívať tlmiace látky, ako je alkohol a prášky na spanie, piť veľa tekutín a stúpať do nadmorskej výšky postupne, napríklad pešo, a nie prepravou. Je tiež dobré jesť veľké množstvo uhľohydráty a dobre odpočívajte, najmä ak stúpanie do kopca prebiehalo rýchlo. Tieto opatrenia umožnia telu zvyknúť si na nedostatok kyslíka spôsobený nízkym atmosférickým tlakom. Ak budete postupovať podľa týchto odporúčaní, vaše telo bude schopné produkovať viac červených krviniek na transport kyslíka do mozgu a vnútorné orgány. K tomu telo zvýši pulz a frekvenciu dýchania.

Prvá lekárska pomoc sa v takýchto prípadoch poskytuje okamžite. Dôležité je presunúť pacienta do nižšej nadmorskej výšky, kde je vyšší atmosférický tlak, najlepšie do nadmorskej výšky nižšej ako 2400 metrov nad morom. Používajú sa aj lieky a prenosné hyperbarické komory. Ide o ľahké prenosné komory, ktoré je možné natlakovať pomocou nožnej pumpy. Pacient s výškovou chorobou sa umiestni do komory, v ktorej sa udržiava tlak zodpovedajúci nižšej nadmorskej výške. Táto kamera sa používa iba na poskytnutie prvej pomoci lekárskej starostlivosti, po ktorom musí byť pacient znížený nižšie.

Niektorí športovci používajú nízky tlak na zlepšenie obehu. Zvyčajne to vyžaduje, aby tréning prebiehal za normálnych podmienok a títo športovci spia v prostredí s nízkym tlakom. Ich telo si tak zvykne na podmienky vysokej nadmorskej výšky a začne produkovať viac červených krviniek, čo následne zvýši množstvo kyslíka v krvi a umožní im dosahovať lepšie výsledky v športe. Na tento účel sa vyrábajú špeciálne stany, v ktorých je regulovaný tlak. Niektorí športovci dokonca menia tlak v celej spálni, no utesnenie spálne je nákladný proces.

Skafandry

Piloti a astronauti musia pracovať v prostredí s nízkym tlakom, takže na kompenzáciu nízkeho tlaku nosia pretlakové obleky. životné prostredie. Vesmírne skafandre úplne chránia človeka pred prostredím. Používajú sa vo vesmíre. Obleky na kompenzáciu nadmorskej výšky používajú piloti vo veľkých výškach – pomáhajú pilotovi dýchať a pôsobia proti nízkemu barometrickému tlaku.

Hydrostatický tlak

Hydrostatický tlak je tlak tekutiny spôsobený gravitáciou. Tento fenomén zohráva obrovskú úlohu nielen v technike a fyzike, ale aj v medicíne. Napríklad krvný tlak je hydrostatický tlak krvi na steny krvných ciev. Krvný tlak je tlak v tepnách. Je reprezentovaný dvoma hodnotami: systolický alebo najvyšší tlak a diastolický alebo najnižší tlak počas srdcového tepu. Zariadenia na meranie krvného tlaku sa nazývajú tlakomery alebo tonometre. Jednotkou krvného tlaku sú milimetre ortuti.

Pythagorejský hrnček je zaujímavá nádoba, ktorá využíva hydrostatický tlak a konkrétne princíp sifónu. Podľa legendy Pytagoras vynašiel tento pohár na kontrolu množstva vína, ktoré vypil. Podľa iných zdrojov mal tento pohár kontrolovať množstvo vypitej vody počas sucha. Vo vnútri hrnčeka je pod kupolou ukrytá zakrivená trubica v tvare U. Jeden koniec tuby je dlhší a končí otvorom v stopke hrnčeka. Druhý, kratší koniec je spojený otvorom s vnútorným dnom hrnčeka tak, aby voda v pohári naplnila hadičku. Princíp činnosti hrnčeka je podobný činnosti modernej splachovacej nádrže. Ak je hladina kvapaliny vyššia ako hladina trubice, kvapalina prúdi do druhej polovice trubice a vyteká von, vďaka hydrostatický tlak. Ak je hladina naopak nižšia, môžete hrnček bezpečne použiť.

Tlak v geológii

Tlak je dôležitý pojem v geológii. Bez tlaku je tvorba drahých kameňov, prírodných aj umelých, nemožná. Vysoký tlak a vysoká teplota sú nevyhnutné aj na tvorbu oleja zo zvyškov rastlín a živočíchov. Na rozdiel od drahých kameňov, ktoré vznikajú najmä v skaly ropa sa tvorí na dne riek, jazier alebo morí. Postupom času sa nad týmito zvyškami hromadí stále viac piesku. Váha vody a piesku tlačí na zvyšky živočíšnych a rastlinných organizmov. Postupom času sa tento organický materiál prepadáva hlbšie a hlbšie do zeme a dosahuje niekoľko kilometrov pod zemský povrch. Teplota sa zvyšuje o 25 °C o každý kilometer nižšie zemského povrchu, tak v hĺbke niekoľkých kilometrov dosahuje teplota 50–80 °C. V závislosti od teploty a teplotného rozdielu v prostredí tvorby môže namiesto ropy vznikať zemný plyn.

Prírodné drahokamy

Tvorba drahokamov nie je vždy rovnaká, ale tlak je jedným z hlavných komponentov tento proces. Napríklad diamanty vznikajú v zemskom plášti, v podmienkach vysokého tlaku a vysokej teploty. Pri sopečných erupciách sa diamanty vďaka magme presúvajú do horných vrstiev zemského povrchu. Niektoré diamanty padajú na Zem z meteoritov a vedci sa domnievajú, že vznikli na planétach podobných Zemi.

Syntetické drahokamy

Výroba syntetických drahokamov sa začala v 50-tych rokoch minulého storočia a v r v poslednej dobe. Niektorí kupujúci uprednostňujú prírodné drahokamy, ale umelé kamene sú čoraz populárnejšie kvôli ich nízkej cene a nedostatku problémov spojených s ťažbou prírodných drahokamov. Mnoho kupujúcich si teda vyberá syntetické drahé kamene, pretože ich ťažba a predaj nesúvisí s porušovaním ľudských práv, detskou prácou a financovaním vojen a ozbrojených konfliktov.

Jednou z technológií pestovania diamantov v laboratórnych podmienkach je metóda pestovania kryštálov pri vysokom tlaku a vysoká teplota. V špeciálnych zariadeniach sa uhlík zahreje na 1000 °C a vystaví sa tlaku asi 5 gigapascalov. Typicky sa ako zárodočný kryštál používa malý diamant a ako uhlíkový základ sa používa grafit. Z nej vyrastie nový diamant. Toto je najbežnejší spôsob pestovania diamantov, najmä ako drahých kameňov, kvôli jeho nízkej cene. Vlastnosti diamantov pestovaných týmto spôsobom sú rovnaké alebo lepšie ako vlastnosti diamantov prírodné kamene. Kvalita syntetických diamantov závisí od spôsobu ich pestovania. V porovnaní s prírodnými diamantmi, ktoré sú často číre, je väčšina umelých diamantov farebná.

Vďaka svojej tvrdosti sú diamanty široko používané vo výrobe. Okrem toho sa cení ich vysoká tepelná vodivosť, optické vlastnosti a odolnosť voči zásadám a kyselinám. Rezné nástroje sú často potiahnuté diamantovým prachom, ktorý sa používa aj v abrazívach a materiáloch. Väčšina diamanty vo výrobe sú umelého pôvodu kvôli nízkym cenám a pretože dopyt po takýchto diamantoch prevyšuje možnosť ich ťažby v prírode.

Niektoré spoločnosti ponúkajú služby na vytváranie pamätných diamantov z popola zosnulého. Aby sa to dosiahlo, po kremácii sa popol rafinuje, až kým sa nezíska uhlík, a potom sa z neho vypestuje diamant. Výrobcovia inzerujú tieto diamanty ako spomienky na zosnulých a ich služby sú obľúbené najmä v krajinách s veľkým percentom bohatých občanov, ako sú Spojené štáty americké a Japonsko.

Spôsob pestovania kryštálov pri vysokom tlaku a vysokej teplote

Metóda pestovania kryštálov pod vysokým tlakom a vysokou teplotou sa používa najmä na syntézu diamantov, no v poslednej dobe sa táto metóda využíva na zdokonaľovanie prírodných diamantov alebo zmenu ich farby. Na umelé pestovanie diamantov sa používajú rôzne lisy. Najdrahší na údržbu a najzložitejší z nich je kubický lis. Používa sa predovšetkým na zvýraznenie alebo zmenu farby prírodných diamantov. Diamanty rastú v lise rýchlosťou približne 0,5 karátu za deň.

Zdá sa vám ťažké preložiť merné jednotky z jedného jazyka do druhého? Kolegovia sú pripravení vám pomôcť. Uverejnite otázku v TCTerms a do niekoľkých minút dostanete odpoveď.

Nižšie sú uvedené tlakové jednotky, ktoré sa používajú na popis parametrov kompresorových zariadení, dúchadiel a vákuové pumpy

Vzťah medzi tlakovými jednotkami
MPa bar mmHg bankomat. kgf/cm2 PSI
1 MPa = 1 10 7500,7 9,8692 10,197 145,04
1 bar = 0,1 1 750,07 0,98692 1,0197 14,504
1 mmHg= 133,32 Pa 1,333*10 -3 1 1,316*10 -3 1,359*10 -3 0,01934
1 atm. = 0,10133 1,0133 760 1 1,0333 14,696
1 kgf/cm2 = 0,098066 0,98066 735,6 0,96784 1 14,223
1 PSI = 6,8946 kPa 0,068946 51,715 0,068045 0, 070307 1

V tabuľke sú uvedené nasledujúce označenia: MPa - megapascal alebo 10 6 Pa (Pascals), 1 Pa = 1 N/m 2 ; mmHg - milimeter ortuti; bankomat. - fyzická atmosféra; pri. =1 kgf/cm 2 - technická atmosféra; PSI (libra na štvorcový palec) - libra na štvorcový palec (jednotka tlaku používaná v USA a Spojenom kráľovstve).

Hodnotu tlaku možno počítať od 0 (absolútny tlak alebo zem v anglickej terminológii) alebo od atmosférického tlaku (pretlak alebo indukovaný v angličtine). Ak sa napríklad meria tlak v technických atmosférach, potom sa absolútny tlak označuje ako ata a pretlak ako ati, napríklad 9 ata, 8 ati.

Jednotky na meranie výkonu kompresorov a vákuových čerpadiel

Výkon kompresora sa meria ako objem stlačeného plynu za jednotku času. Základnou jednotkou je meter kubický za minútu (m 3 /min). Použité jednotky sú l/min. (1 l/min = 0,001 m3/min.), m3/hod. (1 m3/hod. = 1/60 m3/min.), l/s (1 l/s = 60 l/min. = 0,06 m3/min). Produktivita sa zvyčajne udáva buď pre podmienky nasávania (tlak a teplota plynu) alebo pre normálne podmienky (tlak 1 atm., teplota 0 o C). V druhom prípade je písmeno „n“ umiestnené pred jednotkou objemu (napríklad 5 nm 3 /min). V anglicky hovoriacich krajinách sa ako jednotka produktivity používa kubická stopa za minútu (CFM). 1 CFM = 28,3168 l/min. = 0,02832 m3/min. 1 m3/min = 35,314 CFM.

Prevodník dĺžky a vzdialenosti Prevodník hmotnosti Prevodník objemových mier sypkých produktov a potravinárskych produktov Plošný prevodník Prevodník objemu a merných jednotiek v kulinárskych receptoch Prevodník teploty Prevodník tlaku, mechanického namáhania, Youngovho modulu Prevodník energie a práce Prevodník výkonu Prevodník sily Prevodník času Lineárny menič otáčok Plochý uhol Prevodník tepelnej účinnosti a spotreby paliva Prevodník čísel v rôznych číselných sústavách Prevodník jednotiek merania množstva informácií Kurzy mien Dámske veľkosti oblečenia a obuvi Veľkosti pánskeho oblečenia a obuvi Menič uhlovej rýchlosti a frekvencie otáčania Menič zrýchlenia Menič uhlového zrýchlenia Menič hustoty Menič merného objemu Moment meniča zotrvačnosti Moment meniča sily Menič krútiaceho momentu Merné teplo spaľovacieho meniča (hmotnostne) Hustota energie a merné teplo spaľovacieho meniča (objemovo) Menič rozdielu teplôt Koeficient meniča tepelnej rozťažnosti Menič tepelného odporu Konvertor tepelnej vodivosti Konvertor mernej tepelnej kapacity Konvertor energie a tepelného žiarenia Konvertor hustoty tepelného toku Konvertor koeficientu prenosu tepla Konvertor objemového prietoku Konvertor hmotnostného prietoku Konvertor molárneho prietoku Konvertor hmotnostného prietoku Konvertor molárnej koncentrácie Koncentrácia hmoty v konvertore roztoku Dynamické (absolútne) konvertor viskozity Kinematický konvertor viskozity Konvertor povrchového napätia Konvertor paropriepustnosti Konvertor hustoty prietoku vodnej pary Konvertor úrovne zvuku Konvertor citlivosti mikrofónu Konvertor hladiny akustického tlaku (SPL) Konvertor hladiny akustického tlaku s voliteľným referenčným tlakom Prevodník jasu Prevodník svetelnej intenzity Konvertor osvetlenia Počítačová grafika Rozlíšenie a rozlíšenie Prevodník vlnovej dĺžky Dioptrický výkon a ohnisková vzdialenosť Výkon a zväčšenie šošovky (×) Prevodník elektrického náboja Konvertor hustoty lineárneho náboja Konvertor hustoty povrchového náboja Konvertor hustoty objemového náboja Konvertor elektrického prúdu Konvertor hustoty lineárneho prúdu Konvertor hustoty povrchového prúdu Prevodník intenzity elektrického poľa Prevodník elektrostatického potenciálu a napätia Elektrický odporový konvertor Elektrický odporový konvertor Prevodník elektrickej vodivosti Prevodník elektrickej vodivosti Elektrická kapacita Prevodník indukčnosti Americký merací prístroj meradla Úrovne v dBm (dBm alebo dBm), dBV (dBV), wattoch atď. jednotky Magnetomotorický menič sily Menič sily magnetického poľa Menič magnetického toku Magnetoindukčný menič Žiar. Konvertor dávkového príkonu absorbovaného ionizujúceho žiarenia Rádioaktivita. Rádioaktívny rozpadový konvertor Žiarenie. Prevodník dávok expozície Žiarenie. Prevodník absorbovanej dávky Prevodník desiatkovej predpony Prenos dát Prevodník jednotiek typografie a spracovania obrazu Prevodník jednotiek objemu dreva Výpočet molárnej hmotnosti D. I. Mendelejevova periodická tabuľka chemických prvkov

1 megapascal [MPa] = 10,1971621297793 kilogram-sila na meter štvorcový. centimeter [kgf/cm²]

Počiatočná hodnota

Prevedená hodnota

pascal exapascal petapascal terapascal gigapascal megapascal kilopascal hektopascal decapascal decipascal centipascal milipascal mikropascal nanopascal pikopascal femtopascal attopascal newton na meter štvorcový meter newton na meter štvorcový centimeter newtonov na meter štvorcový milimeter kilonewton na meter štvorcový meter bar milibar mikrobar dyne na štvorcový. centimeter kilogram-sila na meter štvorcový. meter kilogram-sila na meter štvorcový centimeter kilogram-sila na meter štvorcový. milimeter gram-sila na meter štvorcový centimeter ton-force (kor.) na štvorcový meter. ft ton-force (kor.) na štvorcový palec ton-sila (dlhá) na štvorcový. ft tonová sila (dlhá) na štvorcový palec kiloundová sila na štvorcový palec kiloundová sila na štvorcový palec lbf na štvorcový ft lbf na štvorcový palec psi libra na štvorcový stopa torr centimeter ortuti (0°C) milimeter ortuti (0°C) palec ortuti (32°F) palec ortuti (60°F) centimeter vody. kolóna (4 °C) mm vody. kolóna (4 °C) palca vody. stĺpec (4°C) stopa vody (4°C) palec vody (60°F) stopa vody (60°F) technická atmosféra fyzická atmosféra decibar steny na meter štvorcový piezobárium (bárium) Planckov tlak morskej vody meter stopa more vody (pri 15°C) meter vody. kolóna (4°C)

Viac o tlaku

Všeobecné informácie

Vo fyzike je tlak definovaný ako sila pôsobiaca na jednotku plochy povrchu. Ak na jednu väčšiu a jednu menšiu plochu pôsobia dve rovnaké sily, potom tlak na menšiu plochu bude väčší. Súhlaste, je oveľa horšie, ak vám niekto, kto nosí ihličky, stúpi na nohu, ako ten, kto nosí tenisky. Ak napríklad pritlačíte čepeľ ostrého noža na paradajku alebo mrkvu, zelenina sa rozreže na polovicu. Povrch čepele v kontakte so zeleninou je malý, takže tlak je dostatočne vysoký na to, aby túto zeleninu nakrájal. Ak zatlačíte rovnakou silou na paradajku alebo mrkvu tupým nožom, zelenina sa s najväčšou pravdepodobnosťou nerozreže, pretože povrch noža je teraz väčší, čo znamená, že tlak je menší.

V sústave SI sa tlak meria v pascaloch alebo newtonoch na meter štvorcový.

Relatívny tlak

Niekedy sa tlak meria ako rozdiel medzi absolútnym a atmosférickým tlakom. Tento tlak sa nazýva relatívny alebo pretlak a meria sa napríklad pri kontrole tlaku v pneumatikách automobilov. Meracie prístroje často, aj keď nie vždy, ukazujú relatívny tlak.

Atmosférický tlak

Atmosférický tlak je tlak vzduchu v danom mieste. Zvyčajne sa vzťahuje na tlak stĺpca vzduchu na jednotku plochy povrchu. Zmeny atmosférického tlaku ovplyvňujú počasie a teplotu vzduchu. Ľudia a zvieratá trpia silnými zmenami tlaku. Nízky krvný tlak spôsobuje u ľudí a zvierat problémy rôznej závažnosti, od psychickej a fyzickej nepohody až po smrteľné choroby. Z tohto dôvodu sú kabíny lietadiel udržiavané nad atmosférickým tlakom v danej výške, pretože atmosférický tlak v cestovnej výške je príliš nízky.

Atmosférický tlak klesá s nadmorskou výškou. Ľudia a zvieratá žijúce vysoko v horách, ako sú Himaláje, sa takýmto podmienkam prispôsobujú. Cestovatelia by na druhej strane mali prijať potrebné opatrenia, aby sa vyhli ochoreniu kvôli tomu, že telo nie je zvyknuté na taký nízky tlak. Horolezci môžu napríklad trpieť výškovou chorobou, ktorá súvisí s nedostatkom kyslíka v krvi a kyslíkovým hladovaním organizmu. Toto ochorenie je nebezpečné najmä pri dlhodobom pobyte v horách. Exacerbácia výškovej choroby vedie k závažným komplikáciám, ako je akútna horská choroba, vysokohorský pľúcny edém, vysokohorský edém mozgu a extrémna horská choroba. Nebezpečenstvo nadmorskej výšky a horskej choroby začína vo výške 2400 metrov nad morom. Aby ste sa vyhli výškovej chorobe, lekári odporúčajú nepoužívať tlmiace látky, ako je alkohol a prášky na spanie, piť veľa tekutín a stúpať do nadmorskej výšky postupne, napríklad pešo, a nie prepravou. Je tiež dobré jesť veľa sacharidov a veľa oddychovať, najmä ak idete rýchlo do kopca. Tieto opatrenia umožnia telu zvyknúť si na nedostatok kyslíka spôsobený nízkym atmosférickým tlakom. Ak budete postupovať podľa týchto odporúčaní, vaše telo bude schopné produkovať viac červených krviniek na transport kyslíka do mozgu a vnútorných orgánov. K tomu telo zvýši pulz a frekvenciu dýchania.

Prvá lekárska pomoc sa v takýchto prípadoch poskytuje okamžite. Dôležité je presunúť pacienta do nižšej nadmorskej výšky, kde je vyšší atmosférický tlak, najlepšie do nadmorskej výšky nižšej ako 2400 metrov nad morom. Používajú sa aj lieky a prenosné hyperbarické komory. Ide o ľahké prenosné komory, ktoré je možné natlakovať pomocou nožnej pumpy. Pacient s výškovou chorobou sa umiestni do komory, v ktorej sa udržiava tlak zodpovedajúci nižšej nadmorskej výške. Takáto komora sa používa iba na poskytovanie prvej pomoci, po ktorej musí byť pacient spustený nižšie.

Niektorí športovci používajú nízky tlak na zlepšenie obehu. Zvyčajne to vyžaduje, aby tréning prebiehal za normálnych podmienok a títo športovci spia v prostredí s nízkym tlakom. Ich telo si tak zvykne na podmienky vysokej nadmorskej výšky a začne produkovať viac červených krviniek, čo následne zvýši množstvo kyslíka v krvi a umožní im dosahovať lepšie výsledky v športe. Na tento účel sa vyrábajú špeciálne stany, v ktorých je regulovaný tlak. Niektorí športovci dokonca menia tlak v celej spálni, no utesnenie spálne je nákladný proces.

Skafandry

Piloti a astronauti musia pracovať v prostredí s nízkym tlakom, preto nosia skafandre, ktoré kompenzujú prostredie s nízkym tlakom. Vesmírne skafandre úplne chránia človeka pred prostredím. Používajú sa vo vesmíre. Obleky na kompenzáciu nadmorskej výšky používajú piloti vo veľkých výškach – pomáhajú pilotovi dýchať a pôsobia proti nízkemu barometrickému tlaku.

Hydrostatický tlak

Hydrostatický tlak je tlak tekutiny spôsobený gravitáciou. Tento fenomén zohráva obrovskú úlohu nielen v technike a fyzike, ale aj v medicíne. Napríklad krvný tlak je hydrostatický tlak krvi na steny krvných ciev. Krvný tlak je tlak v tepnách. Je reprezentovaný dvoma hodnotami: systolický alebo najvyšší tlak a diastolický alebo najnižší tlak počas srdcového tepu. Zariadenia na meranie krvného tlaku sa nazývajú tlakomery alebo tonometre. Jednotkou krvného tlaku sú milimetre ortuti.

Pythagorejský hrnček je zaujímavá nádoba, ktorá využíva hydrostatický tlak a konkrétne princíp sifónu. Podľa legendy Pytagoras vynašiel tento pohár na kontrolu množstva vína, ktoré vypil. Podľa iných zdrojov mal tento pohár kontrolovať množstvo vypitej vody počas sucha. Vo vnútri hrnčeka je pod kupolou ukrytá zakrivená trubica v tvare U. Jeden koniec tuby je dlhší a končí otvorom v stopke hrnčeka. Druhý, kratší koniec je spojený otvorom s vnútorným dnom hrnčeka tak, aby voda v pohári naplnila hadičku. Princíp činnosti hrnčeka je podobný činnosti modernej splachovacej nádrže. Ak hladina kvapaliny stúpne nad úroveň trubice, kvapalina preteká do druhej polovice trubice a vplyvom hydrostatického tlaku vyteká. Ak je hladina naopak nižšia, môžete hrnček bezpečne použiť.

Tlak v geológii

Tlak je dôležitý pojem v geológii. Bez tlaku je tvorba drahých kameňov, prírodných aj umelých, nemožná. Vysoký tlak a vysoká teplota sú nevyhnutné aj na tvorbu oleja zo zvyškov rastlín a živočíchov. Na rozdiel od drahokamov, ktoré sa primárne tvoria v horninách, sa ropa tvorí na dne riek, jazier alebo morí. Postupom času sa nad týmito zvyškami hromadí stále viac piesku. Váha vody a piesku tlačí na zvyšky živočíšnych a rastlinných organizmov. Postupom času sa tento organický materiál prepadáva hlbšie a hlbšie do zeme a dosahuje niekoľko kilometrov pod zemský povrch. Teplota sa každým kilometrom pod zemským povrchom zvyšuje o 25 °C, takže v hĺbke niekoľkých kilometrov dosahuje teplota 50–80 °C. V závislosti od teploty a teplotného rozdielu v prostredí tvorby môže namiesto ropy vznikať zemný plyn.

Prírodné drahokamy

Tvorba drahokamov nie je vždy rovnaká, ale tlak je jednou z hlavných zložiek tohto procesu. Napríklad diamanty vznikajú v zemskom plášti, v podmienkach vysokého tlaku a vysokej teploty. Pri sopečných erupciách sa diamanty vďaka magme presúvajú do horných vrstiev zemského povrchu. Niektoré diamanty padajú na Zem z meteoritov a vedci sa domnievajú, že vznikli na planétach podobných Zemi.

Syntetické drahokamy

Výroba syntetických drahokamov sa začala v 50. rokoch minulého storočia a v poslednej dobe si získava na popularite. Niektorí kupujúci uprednostňujú prírodné drahokamy, ale umelé kamene sú čoraz populárnejšie kvôli ich nízkej cene a nedostatku problémov spojených s ťažbou prírodných drahokamov. Mnoho kupujúcich si teda vyberá syntetické drahé kamene, pretože ich ťažba a predaj nesúvisí s porušovaním ľudských práv, detskou prácou a financovaním vojen a ozbrojených konfliktov.

Jednou z technológií pestovania diamantov v laboratórnych podmienkach je metóda pestovania kryštálov pri vysokom tlaku a vysokej teplote. V špeciálnych zariadeniach sa uhlík zahreje na 1000 °C a vystaví sa tlaku asi 5 gigapascalov. Typicky sa ako zárodočný kryštál používa malý diamant a ako uhlíkový základ sa používa grafit. Z nej vyrastie nový diamant. Toto je najbežnejší spôsob pestovania diamantov, najmä ako drahých kameňov, kvôli jeho nízkej cene. Vlastnosti takto pestovaných diamantov sú rovnaké alebo lepšie ako u prírodných kameňov. Kvalita syntetických diamantov závisí od spôsobu ich pestovania. V porovnaní s prírodnými diamantmi, ktoré sú často číre, je väčšina umelých diamantov farebná.

Vďaka svojej tvrdosti sú diamanty široko používané vo výrobe. Okrem toho sa cení ich vysoká tepelná vodivosť, optické vlastnosti a odolnosť voči zásadám a kyselinám. Rezné nástroje sú často potiahnuté diamantovým prachom, ktorý sa používa aj v abrazívach a materiáloch. Väčšina diamantov vo výrobe je umelého pôvodu kvôli nízkej cene a tomu, že dopyt po takýchto diamantoch prevyšuje možnosť ich ťažby v prírode.

Niektoré spoločnosti ponúkajú služby na vytváranie pamätných diamantov z popola zosnulého. Aby sa to dosiahlo, po kremácii sa popol rafinuje, až kým sa nezíska uhlík, a potom sa z neho vypestuje diamant. Výrobcovia inzerujú tieto diamanty ako spomienky na zosnulých a ich služby sú obľúbené najmä v krajinách s veľkým percentom bohatých občanov, ako sú Spojené štáty americké a Japonsko.

Spôsob pestovania kryštálov pri vysokom tlaku a vysokej teplote

Metóda pestovania kryštálov pod vysokým tlakom a vysokou teplotou sa používa najmä na syntézu diamantov, no v poslednej dobe sa táto metóda využíva na zdokonaľovanie prírodných diamantov alebo zmenu ich farby. Na umelé pestovanie diamantov sa používajú rôzne lisy. Najdrahší na údržbu a najzložitejší z nich je kubický lis. Používa sa predovšetkým na zvýraznenie alebo zmenu farby prírodných diamantov. Diamanty rastú v lise rýchlosťou približne 0,5 karátu za deň.

Zdá sa vám ťažké preložiť merné jednotky z jedného jazyka do druhého? Kolegovia sú pripravení vám pomôcť. Uverejnite otázku v TCTerms a do niekoľkých minút dostanete odpoveď.

Pomerne často je pri výpočte parametrov dodávky vody alebo vykurovania potrebné previesť bary na atm alebo atm na MPa, pretože rôzne zdroje (referenčné knihy, technická literatúra atď.) môžu udávať hodnoty tlaku v rôznych meracích jednotkách. Pre pohodlie vám uvádzame súhrnnú tabuľku na prevod jednotiek merania tlaku:

Jednotky

bar

mmHg

mm vodného stĺpca

bankomat (fyzický)

kgf/m2

kgf/cm2
(technické
bankomat.)

Pa

kPa

MPa

1 bar 1 750,064 10197,16 0,986923 10,1972 ∙10 3 1,01972 10 5 100 0,1
1 mmHg 1,33322 ∙10 -3 1 13,5951 1,31579 ∙10 -3 13,5951 13,5951 ∙10 -3 133,322 133,322 ∙10 -3 133,32 ∙10 -6
1 mm vodný stĺpec 98,0665 ∙10 -6 73,5561 ∙10 -3 1 96,7841 ∙10 -6 1 0,1 ∙10 -3 9,80665 9,80665 ∙10 -3 9,8066 ∙10 -6
1 atm 1,01325 760 10,3323 ∙10 3 1 10,3323 ∙10 3 1,03323 101,325 ∙10 3 101,325 101,32 ∙10 -3
1 kgf/m2 98,0665 ∙10 -6 73,5561 ∙10 -3 1 96,7841 ∙10 -6 1 0,1 ∙10 -3 9,80665 9,80665 ∙10 -3 9,8066 ∙10 -6
1 kgf/cm2 0,980665 735,561 10000 0,967841 10000 1 98,0665 ∙10 3 98,0665 98,066 ∙10 -3
1 Pa 10 -5 7,50064∙10 -3 0,1019716 9,86923 ∙10 -6 101,972 ∙10 -3 10,1972 ∙10 -6 1 10 -3 10 -6
1 kPa 0,01 7,50064 101,9716 9,86923 ∙10 -3 101,972 10,1972 ∙10 -3 10 3 1 10 -3
1 MPa 10 7,50064 ∙10 3 101971,6 9,86923 101,972 ∙10 3 10,1972 10 6 10 3 1

Systém SI zahŕňa:
Bar
1 bar = 0,1 MPa
1 bar = 10197,16 kgf/m2
1 bar = 10 N/cm2
Pa
1 Pa = 1000 MPa
1 MPa = 7500 mm. rt. čl.
1 MPa = 106 N/m2

Inžinierske jednotky:
1 mmHg = 13,6 mm vodného stĺpca
1 mm vodný stĺpec = 0,0001 kgf/cm2
1 mm vodný stĺpec = 1 kgf/m2
1 atm = 101,325 ∙ 103 Pa

Podrobný zoznam tlakové jednotky:

  • 1 Pa (N/m 2) = 0,0000102 Atmosféra (metrická)
  • 1 Pa (N/m 2) = 0,0000099 štandardná atmosféra Atmosféra (štandardná) = štandardná atmosféra
  • 1 Pa (N/m2) = 0,00001 bar / bar
  • 1 Pa (N/m2) = 10 Barad / Barad
  • 1 Pa (N/m2) = 0,0007501 Centimetre Hg. čl. (0°C)
  • 1 Pa (N/m2) = 0,0101974 centimetrov in. čl. (4°C)
  • 1 Pa (N/m2) = 10 Dyn/cm2
  • 1 Pa (N/m2) = 0,0003346 stopa vody (4 °C)
  • 1 Pa (N/m2) = 10-9 gigapascalov
  • 1 Pa (N/m2) = 0,01 hektopascalov
  • 1 Pa (N/m2) = 0,0002953 Dumov Hg. / palec ortuti (0 °C)
  • 1 Pa (N/m2) = 0,0002961 palca Hg. čl. / palec ortuti (15,56 °C)
  • 1 Pa (N/m2) = 0,0040186 Dumov v.st. / palec vody (15,56 °C)
  • 1 Pa (N/m 2) = 0,0040147 Dumov v.st. / palec vody (4 °C)
  • 1 Pa (N/m 2) = 0,0000102 kgf/cm 2 / Kilogramová sila/centimeter 2
  • 1 Pa (N/m 2) = 0,0010197 kgf/dm 2 / Kilogramová sila/decimeter 2
  • 1 Pa (N/m2) = 0,101972 kgf/m2 / Kilogramová sila/meter 2
  • 1 Pa (N/m 2) = 10 -7 kgf/mm 2 / Kilogramová sila/milimeter 2
  • 1 Pa (N/m2) = 10-3 kPa
  • 1 Pa (N/m2) = 10-7 kiloundová sila/štvorcový palec
  • 1 Pa (N/m2) = 10-6 MPa
  • 1 Pa (N/m2) = 0,000102 Metrov st. / meter vody (4 °C)
  • 1 Pa (N/m2) = 10 mikrobarov / mikrobarov (barye, barrie)
  • 1 Pa (N/m2) = 7,50062 mikrónov Hg. / mikrón ortuti (militorr)
  • 1 Pa (N/m2) = 0,01 milibarov
  • 1 Pa (N/m2) = 0,0075006 milimeter ortuti (0 °C)
  • 1 Pa (N/m2) = 0,10207 mm š. / Milimeter vody (15,56 °C)
  • 1 Pa (N/m2) = 0,10197 mm w.st. / Milimeter vody (4 °C)
  • 1 Pa (N/m2) = 7,5006 militorr / militorr
  • 1 Pa (N/m2) = 1N/m2 / Newton/meter štvorcový
  • 1 Pa (N/m2) = 32,1507 denných uncí/sq. palec / unca sila (avdp) / palec štvorcový
  • 1 Pa (N/m2) = 0,0208854 libier sily na meter štvorcový. ft / sila libry/štvorcová stopa
  • 1 Pa (N/m2) = 0,000145 libier sily na meter štvorcový. palec / sila libry / palec štvorcový
  • 1 Pa (N/m2) = 0,671969 libier na štvorcový meter. ft / libra/štvorcová stopa
  • 1 Pa (N/m2) = 0,0046665 libry na štvorcový meter. palec / Poundal / palec štvorcový
  • 1 Pa (N/m2) = 0,0000093 Dlhé tony na meter štvorcový. stopa / tona (dlhá) / stopa 2
  • 1 Pa (N/m2) = 10 -7 dlhých ton na meter štvorcový. palec / tona (dlhá)/palec 2
  • 1 Pa (N/m2) = 0,0000104 Krátke tony na meter štvorcový. ft / Ton (krátke) / stopa 2
  • 1 Pa (N/m 2) = 10 -7 ton na štvorcový meter. palec / tona / palec 2
  • 1 Pa (N/m2) = 0,0075006 Torr / Torr